# VITA ENAMIC<sup>®</sup>

Recommodation for CNC machines

Machining mode : Grinding – Block & Disc

- Information and tips
- Tools
- Machining strategy
- Parameters



version: 15.05.17



#### Information

The information presented here, are intended as a recommendation. Depending on the available CNC machines, CAM software, tools, etc. the information have to be adapted to your own production situation. As a result, different results may obtained.

The development of the strategies and parameter was done with following system:

- imes-icore CORiTEC350i
- CAM Software: Hyperdent 8.2 Beta

According to this recommendation, a fully anatomical posterior tooth crown (tooth 26) can be finished in 19min (EM14 Block oder 12mm Disc), with a good surface and fit.

We recommend Tools from:



Tips for VITA ENAMIC<sup>®</sup>

Avoid vertically or fast plunge movements. It is important that the tool always plunge slow and soft into the material.

- We recommend to grind VITA ENAMIC wet
- Plunge into the material with a ramp or helically (5 degree) and use a reduced plunge feed (feed Z)
- The diameter of the restoration holding pins should be 1,0-1,5 mm (2-3 pins per Restauration)
- If there is just one holding pin than the diameter should be 2,0 2,5 mm



#### Strategy

- A two side machining and 3+2 strategies are sufficient in most cases.
- In order to maintain a good fit, even by restoration with undercuts, the last finishing of the cavity should be done with a 5 axis strategy.
- In order to maintain a good occlusal fit, the complete occlusal side should be finished with max. a ø1.2mm tool (or less). In that way, a special finishing of the fissures isn`t necessary.
- If a smaller tool is used after a bigger one, it can be necessary to use a roughing strategy to remove remaining material.
  Tool life and process reliability are increased this way.
- To process cavities or pockets, the tool should be tilted 4-6 degrees (5 axis strategy). This will decrease the wear of the tool tip.
- When using grinding tools, the whole grinding body should be used.





## Recommended Tools

| Diameter | Grain<br>size | Description                     | Manufacturer | Order-Code                 | Max.<br>Blank<br>Depth |
|----------|---------------|---------------------------------|--------------|----------------------------|------------------------|
| Ø 2 mm   | D126          | Diamond ball nose grinding burr | Franken      | 1716.200611<br>(6mm shaft) | 12mm                   |
| Ø1mm     | D76           | Diamond ball nose grinding burr | Franken      | 1716.100609<br>(6mm shaft) | 1211111                |
|          |               |                                 |              |                            |                        |
| Ø 2.5 mm | -             | Diamond ball nose grinding burr | imes-icore   | T21<br>(3 & 6mm shaft)     | 19mm                   |
| Ø1mm     | -             | Diamond ball nose grinding burr | imes-icore   | T22<br>(3 & 6mm shaft)     | 18mm                   |

### Tool Life

| ΤοοΙ                                           | Units      | Restoration                     |
|------------------------------------------------|------------|---------------------------------|
| Ø 2 mm Diamond ball nose<br>grinding burr      | 68 Stück   | Fully anatomical crown tooth 26 |
| Ø 1 mm Diamond ball nose<br>grinding burr      | >150 Stück | Fully anatomical crown tooth 26 |
|                                                |            |                                 |
| Ø 2.5 mm<br>Diamond ball nose<br>grinding burr | >150 Stück | Fully anatomical crown tooth 26 |
| Ø 1 mm<br>Diamond ball nose<br>grinding burr   | >150 Stück | Fully anatomical crown tooth 26 |

## Order of Machining

| Step | Machining side     | Machining            | ΤοοΙ              |
|------|--------------------|----------------------|-------------------|
| 1    | Cavity             | Roughing             | Ø 2.0 or Ø 2.5 mm |
| 2    | Cavity, outside    | Roughing / Finishing | Ø 2.0 or Ø 2.5 mm |
| 3    | Occlusal side      | Pre-Drilling         | Ø 2.0 or Ø 2.5 mm |
| 4    | Occlusal side      | Pre-Finishing        | Ø 2.0 or Ø 2.5 mm |
| 5    | Occlusal side      | Finishing /Fissures  | Ø1mm              |
| 6    | Preperation margin | Finishing            | Ø1mm              |
| 7    | Cavity             | Finishing            | Ø1mm              |
| 8    | Cavity             | Remaining material   | Ø1mm              |
|      |                    |                      |                   |



| Step 1 |   | 3+2 axis      |       |           |        |  |
|--------|---|---------------|-------|-----------|--------|--|
|        |   | Tool          | Ø 2.0 | or Ø 2.5  | mm     |  |
|        | 3 | Tolerance     |       | 0.01      |        |  |
|        |   | Spindel speed | [n]   | 40000     | rpm    |  |
| t      |   | Feed speed XY | [Vf]  | 1500      | mm/min |  |
|        |   | Feed speed Z  | [Vf]  | 500       | mm/min |  |
|        |   |               | [ae]  | 0.12      | mm     |  |
|        |   |               | [ap]  | Full Tool | mm     |  |
|        |   | Oversize      |       | 0,05      | mm     |  |

| Step 2 | Ou | 3+2 axis        |       |           |        |   |  |
|--------|----|-----------------|-------|-----------|--------|---|--|
|        |    | Tool            | Ø 2.0 | or Ø 2.5  | mm     |   |  |
|        |    | Tolerance       |       | 0.01      |        |   |  |
|        |    | Spindel speed   | [n]   | 40000     | rpm    |   |  |
|        |    | Feed speed XY   | [Vf]  | 1500      | mm/min |   |  |
|        |    | Feed speed Z    | [Vf]  | 500       | mm/min |   |  |
|        |    | Width of cut XY | [ae]  | 0.12      | mm     |   |  |
|        |    | Depth of cut Z  | [ap]  | Full Tool | mm     | 1 |  |
|        |    | Oversize        |       | 0         | mm     |   |  |

| Step 3 |  | 3+2 axis        |       |           |        |  |
|--------|--|-----------------|-------|-----------|--------|--|
|        |  | Tool            | Ø 2.0 | or Ø 2.5  | mm     |  |
| ÷      |  | Tolerance       |       | 0.01      |        |  |
|        |  | Spindel speed   | [n]   | 40000     | rpm    |  |
|        |  | Feed speed XY   | [Vf]  | 800       | mm/min |  |
|        |  | Feed speed Z    | [Vf]  | 500       | mm/min |  |
|        |  | Width of cut XY | [ae]  | 0.1       | mm     |  |
| •      |  | Depth of cut Z  | [ap]  | Full Tool | mm     |  |
|        |  | Oversize        |       | 0         | mm     |  |

| Step 4 |  | 3+2 axis        |       |          |        |  |  |
|--------|--|-----------------|-------|----------|--------|--|--|
|        |  | Tool            | Ø 2.0 | or Ø 2.5 | mm     |  |  |
|        |  | Tolerance       |       | 0.01     |        |  |  |
|        |  | Spindel speed   | [n]   | 40000    | rpm    |  |  |
|        |  | Feed speed XY   | [Vf]  | 1200     | mm/min |  |  |
|        |  | Feed speed Z    | [Vf]  | 1000     | mm/min |  |  |
|        |  | Width of cut XY | [ae]  | 0.12     | mm     |  |  |
|        |  | Depth of cut Z  | [ap]  | -        | mm     |  |  |
|        |  | Oversize        |       | 0        | mm     |  |  |



| Step 5 | 0 | 3+2 axis        |      |       |        |  |
|--------|---|-----------------|------|-------|--------|--|
|        |   | Tool            | Ø1m  | m     |        |  |
|        |   | Tolerance       |      | 0.01  |        |  |
|        |   | Spindel speed   | [n]  | 40000 | rpm    |  |
|        |   | Feed speed XY   | [Vf] | 1200  | mm/min |  |
|        |   | Feed speed Z    | [Vf] | 1000  | mm/min |  |
|        |   | Width of cut XY | [ae] | 0.1   | mm     |  |
| •      |   | Depth of cut Z  | [ap] | -     | mm     |  |
|        |   | Oversize        |      | 0     | mm     |  |

| Step 6 |  | 5 axis          |      |       |        |   |  |
|--------|--|-----------------|------|-------|--------|---|--|
|        |  | Tool            | Ø1m  | Ø 1mm |        |   |  |
|        |  | Tolerance       |      | 0.01  |        |   |  |
|        |  | Spindel speed   | [n]  | 40000 | rpm    |   |  |
|        |  | Feed speed XY   | [Vf] | 1200  | mm/min |   |  |
|        |  | Feed speed Z    | [Vf] | 1000  | mm/min |   |  |
|        |  | Width of cut XY | [ae] | 0,1   | mm     |   |  |
|        |  | Depth of cut Z  | [ap] | -     | mm     | 1 |  |
|        |  | Oversize        |      | 0     | mm     |   |  |

| Step 7 |  | 5 axis          |           |       |        |  |
|--------|--|-----------------|-----------|-------|--------|--|
|        |  | Tool            | Ø1m       | m     |        |  |
|        |  | Tolerance       |           | 0.01  |        |  |
|        |  | Spindel speed   | [n]       | 40000 | rpm    |  |
|        |  | Feed speed XY   | [Vf]      | 1200  | mm/min |  |
|        |  | Feed speed Z    | [Vf]      | 1000  | mm/min |  |
|        |  | Width of cut XY | [ae]      | 0,1   | mm     |  |
|        |  | Depth of cut Z  | [ap] - mm |       |        |  |
|        |  | Oversize        |           | 0     | mm     |  |

| Step 8 | Cavity - Remaining Material |                 |      |       |        | 5 axis |  |
|--------|-----------------------------|-----------------|------|-------|--------|--------|--|
|        |                             | Tool            | Ø1m  | m     |        |        |  |
|        |                             | Tolerance       |      | 0.01  |        |        |  |
|        |                             | Spindel speed   | [n]  | 40000 | rpm    |        |  |
|        |                             | Feed speed XY   | [Vf] | 1000  | mm/min |        |  |
|        |                             | Feed speed Z    | [Vf] | 500   | mm/min |        |  |
|        |                             | Width of cut XY | [ae] | 0.1   | mm     |        |  |
|        |                             | Depth of cut Z  | [ap] | 0.05  | mm     |        |  |
|        |                             | Oversize        |      | 0     | mm     |        |  |



Formulas for cutting data calculation

| Expression<br>used in text    | Term                  | Symbol      | Formula                         |
|-------------------------------|-----------------------|-------------|---------------------------------|
| Feed speed XY<br>Feed speed Z | Feed speed            | Vf [mm/min] | Vf = fz * z * n                 |
| Spindle speed                 | Spindle speed         | n [rpm]     | $n = \frac{Vc * 1000}{\pi * d}$ |
| Width of cut XY               | Width of cut          | ae [mm]     |                                 |
| Depth of cut Z                | Depth of cut          | ap [mm]     |                                 |
|                               | Feed per cutting edge | fz [mm]     | $fz = \frac{Vf}{n * z}$         |
|                               | Cutting speed         | Vc [m/min]  | $Vc = \frac{\pi * d * n}{1000}$ |



#### Secrecy

We point out that, according to the declaration of intent and secrecy, both parties committed themselves to treat business and company secrets and any other confidential information of the other party confidentially - whether they are of a technical or commercial nature and regardless of the way they have been disclosed - including all documents, drawings and records of data, and not to disclose them to any third parties.

The obligation to maintain secrecy shall not apply if confidential information was already known to the recipient of the information or the public or if such information was disclosed to him or the public through no fault of the recipient of the information; the recipient of the information shall be obliged to furnish proof.

The obligation to maintain secrecy shall remain in force after termination of the cooperation as long as the information has not been disclosed by a third party.

#### Exclusion of liability

VITA Zahnfabrik H. Rauter GmbH & CO KG reserves the right not to be responsible for the topicality, correctness, completeness or quality of the information provided. Liability claims regarding damage caused by the use of any information provided, including any kind of information which is incomplete or incorrect, will therefore be rejected.

Our products should be used according to the working instructions. We cannot be held liable for damages resulting from incorrect handling or usage. The user is furthermore obliged to check the product before use with regard to its suitability for the intended area of application.