VITA ENAMIC®

Processing recommendation for CAD/CAM systems

VITA shade determination

VITA shade communication

VITA shade reproduction

VITA shade control

VITA – perfect match.

Machining mode: Grinding – Block & Disc

- Information and tips
- Tools
- Machining strategy
- Parameters

Information

The information presented here, are intended as a recommendation.

Depending on the available CNC machines, CAM software, tools, etc. the information have to be adapted to your own production situation. As a result, different results may obtained.

The development of the strategies and parameter was done with following system:

- imes-icore CORiTEC350i
- CAM Software: Hyperdent 8.2 Beta

According to this recommendation, a fully anatomical posterior tooth crown (tooth 26) can be finished in 19min (EM14 Block oder 12mm Disc), with a good surface and fit.

We recommend Tools from:

FRANKEN GmbH & Co. KG, Fabrik für Präzisionswerkzeuge

www.franken-dental.com

imes-icore® GmbH

www.imes-icore.de

Tips for VITA Enamic®

Avoid vertically or fast plunge movements. It is important that the tool always plunge slow and soft into the material.

- We recommend to grind VITA ENAMIC wet
- Plunge into the material with a ramp or helically (5 degree) and use a reduced plunge feed (feed Z)
- The diameter of the restoration holding pins should be 1,0-1,5 mm (2-3 pins per Restauration)
- If there is just one holding pin than the diameter should be 2.0 2.5 mm

Strategy

- A two side machining and 3+2 strategies are sufficient in most cases.
- In order to maintain a good fit, even by restoration with undercuts, the last finishing of the cavity should be done with a 5 axis strategy.
- In order to maintain a good occlusal fit, the complete occlusal side should be finished with max. a Ø1.2mm tool (or less). In that way, a special finishing of the fissures isn't necessary.
- If a smaller tool is used after a bigger one, it can be necessary to use a roughing strategy to remove remaining material.
- Tool life and process reliability are increased this way.
- To process cavities or pockets, the tool should be tilted 4-6 degrees (5 axis strategy). This will decrease the wear of the tool tip.
- When using grinding tools, the whole grinding body should be used.

Recommended Tools

Diameter	Grain size	Description	Manufacturer	Order-Code	Max. Blank Depth	
Ø 2 mm	D126	Diamond ball nose grinding burr	Franken	1716.200611 (6mm shaft)	12	
Ø 1 mm	D76	Diamond ball nose grinding burr	Franken	1716.100609 (6mm shaft)	12mm	
~ -		Diamond ball nose		T21		
Ø 2.5 mm	-	grinding burr	imes-icore	(3 & 6mm shaft)	10	
Ø 1 mm	_	Diamond ball nose	imes-icore	T22	18mm	
ווווווווע	-	grinding burr	burr imes-icore	(3 & 6mm shaft)		

Tool Life

Tool	Units	Restoration
Ø 2 mm Diamond ball nose grinding burr	68	Fully anatomical crown tooth 26
Ø 1 mm Diamond ball nose grinding burr	>150	Fully anatomical crown tooth 26
Ø 2.5 mm Diamond ball nose grinding burr	>150	Fully anatomical crown tooth 26
Ø 1 mm Diamond ball nose grinding burr	>150	Fully anatomical crown tooth 26

Order of Machining

Step	Machining side	Machining	Tool
1	Cavity	Roughing	Ø 2.0 or Ø 2.5 mm
2	Cavity, outside	Roughing / Finishing	Ø 2.0 or Ø 2.5 mm
3	Occlusal side	Pre-Drilling	Ø 2.0 or Ø 2.5 mm
4	Occlusal side	Pre-Finishing	Ø 2.0 or Ø 2.5 mm
5	Occlusal side	Finishing /Fissures	Ø 1 mm
6	Preperation margin	Finishing	Ø 1 mm
7	Cavity	Finishing	Ø 1 mm
8	Cavity	Remaining material	Ø 1 mm

Step 1	Ca	3+2 axis			
	Tool	Ø 2.0 or Ø 2.5 mm			notes:
(a)	Tolerance		0.01		
	Spindel speed	[n]	40000	rpm	
4	Feed speed XY	[Vf]	1500	mm/min	
	Feed speed Z	[Vf]	500	mm/min	
	Width of cut XY	[ae]	0.12	mm	
	Depth of cut Z	[ap]	Full Tool	mm	
	Oversize		0,05	mm	

Step 2	Outside Cav	3+2 axis			
	Tool Ø 2.0 or Ø 2.5 mm			notes:	
	Tolerance		0.01		
	Spindel speed	[n]	40000	rpm	
	Feed speed XY	[Vf]	1500	mm/min	
	Feed speed Z	[Vf]	500	mm/min	
	Width of cut XY	[ae]	0.12	mm	
	Depth of cut Z	[ap]	Full Tool	mm	
	Oversize		0,0	mm	

Step 3	Occlus	3+2 axis			
	Tool Ø 2.0 or Ø 2.5 mm			notes:	
N.	Tolerance		0.01		
	Spindel speed	[n]	40000	rpm	
	Feed speed XY	[Vf]	800	mm/min	
	Feed speed Z	[Vf]	500	mm/min	
	Width of cut XY	[ae]	0.1	mm	
	Depth of cut Z	[ap]	Full Tool	mm	
	Oversize		0	mm	

Step 4	Occlusa .	3+2 axis			
	Tool	Ø 2.0 o	Ø 2.0 or Ø 2.5 mm		notes:
6122	Tolerance		0.01		
	Spindel speed	[n]	40000	rpm	
	Feed speed XY	[Vf]	1200	mm/min	
	Feed speed Z	[Vf]	1000	mm/min	
	Width of cut XY	[ae]	0.12	mm	
	Depth of cut Z	[ap]	-	mm	
	Oversize		0	mm	

Step 5	Occlusal side -	3+2 axis			
	Tool	Ø 1mm			notes:
	Tolerance		0.01		
	Spindel speed	[n]	40000	rpm	
	Feed speed XY	[Vf]	1200	mm/min	
	Feed speed Z	[Vf]	1000	mm/min	
	Width of cut XY	[ae]	0.1	mm	
	Depth of cut Z	[ap]	-	mm	
	Oversize		0,0	mm	

Step 6	Preperation I	5 axis			
	Tool Ø 1mm			notes:	
	Tolerance		0.01		
	Spindel speed	[n]	40000	rpm	
	Feed speed XY	[Vf]	1200	mm/min	
	Feed speed Z	[Vf]	1000	mm/min	
	Width of cut XY	[ae]	0,1	mm	
	Depth of cut Z	[ap]	-	mm	
	Oversize		0,0	mm	


Step 7	Cavity - Finishing				5 axis
	Tool	Ø 1mm		notes:	
2.5	Tolerance		0.01		
	Spindel speed	[n]	40000	rpm	
	Feed speed XY	[Vf]	1200	mm/min	
X	Feed speed Z	[Vf]	1000	mm/min	
	Width of cut XY	[ae]	0,1	mm	
	Depth of cut Z	[ap]	-	mm	
	Oversize		0,0	mm	

Step 8	Cavity - Ren	5 axis			
	Tool	Tool Ø 1mm			notes:
	Tolerance		0,01		
	Spindel speed	[n]	40000	rpm	
	Feed speed XY	[Vf]	1000	mm/min	
	Feed speed Z	[Vf]	500	mm/min	
	Width of cut XY	[ae]	0,1	mm	
	Depth of cut Z	[ap]	0,05	mm	
	Oversize		0,0	mm	

Formulas for cutting data calculation

Expression used in text	Term	Symbol	Formula
Feed speed XY Feed speed Z	Feed speed	Vf [mm/min]	Vf = fz * z * n
Spindle speed	Spindle speed	n [rpm]	$n = \frac{Vc * 1000}{\pi * d}$
Width of cut XY	Width of cut	ae [mm]	
Depth of cut Z	Depth of cut	ap [mm]	
	Feed per cutting edge	fz [mm]	$fz = \frac{Vf}{n * z}$
	Cutting speed	Vc [m/min]	$Vc = \frac{\pi * d * n}{1000}$

More information about **VITA CAD/CAM** MATERIALS is available at: www.vita-zahnfabrik.com/cadcam

Please note: Our products must be used in accordance with the instructions for use. We accept no liability for any damage resulting from incorrect handling or usage. The user is furthermore obliged to check the product before use with regard to its suitability for the intended area of applications. We cannot accept any liability if the product is used in conjunction with materials and equipment from other manufacturers that are not compatible or not authorized for use with our product and this results in damage. The VITA Modulbox is not necessarily a component of the product. Date of issue of this information:

After the publication of this information for use any previous versions become obsolete. The current version can be found at www.vita-zahnfabrik.com

VITA Zahnfabrik has been certified and the following products bear the CE mark: C $\,\varepsilon\,$ 1024

